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ABSTRACT

We present an approach for reducing the number of variables and constraints, which

is combined with System Analysis Equations (SAE), for multiobjective optimization-based

design. In order to develop a simplified analysis model, the SAE is computed outside an op-

timization loop and then approximated for use by an optimizer. Two examples are presented

to demonstrate the approach.
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1 Introduction

There are mainly two classes of methods for handling optimization-based design of complex
engineering systems. In the context of this paper, a complex system entails two or more

of the following features: (i) has computationally costly SAE, (ii) has a large number of
variables and nonlinear constraints, (iii) is multiobjective, and (iv) is decomposable into a
number of subsystems which hierarchically or nonhierarchically interact with one another.

The first class of methods are mostly applied to handle features (i) and (ii) (Vanderplaats,

1984, where further references can be found), and more recently (iii) (see, for example, Zhou
and Tits, 1993a). In majority of the methods in this class, the system analysis is performed
outside an optimization loop; often the system analysis (which is a part of an outside loop,
see Figure 2 for an example) is approximated for use in the optimization loop (the inside

loop, see Figure 2) in an attempt to reduce the number of costly and detailed analyses. The
number of variables can also be reduced by design variable linking (Vanderplaats, 1984), this

is usually done by problem-dependent assumptici:s (e.g., symmetry in structural design).
Finally, the number of constraints can be reduced by employing only a significant subset of
constraints (the active set) in the optimization loop (Zhou and Tits, 1993b; Gill et al., 1982).

The second class of methods are almost entirely applied to handle single-objective prob-

lems with the features (i), (ii), and (iv) ( see, for example, Sobieski, 1992; Wu and Azarm,

1992; Zhao and Azarm, 1993, where further references can be found), with the exception of
Haimes et al.(1990) method which is applicable to hierarchical multiobjective problems, and
that of Azarm and Eschenauer (1993) which does not handle the SAE as formulated here. In
majority of the methods in this class, the system analysis and/or optimization model can be
decomposed into a number of submodels (subsystems or subproblems). The decomposition

(which might be performed on the system analysis or optimization model or both) is called

hierarchic, if it has an overall tree-type structure with two or more levels of subsystems. In

hierarchic decomposition, horizontal interaction in between the subsystems located at the
same level is not permissible. On the other hand, the decomposition is called nonhierarchic,
if there is no restriction on the interaction which might exist in between the subsystems.

So far, none of the methods reported in the literature can simultaneously handle all of the

above-mentioned features which are becoming increasingly common in the design of complex
engineering systems. In an attempt towards removing this shortcoming, this paper presents

an extension of a recent work by Azarm and Eschenauer (1993) whereby a multiobjective

approach for reducing the number of variables and constraints is combined with the SAE

which might be hierarchically or nonhierarchically coupled.

The remaining sections of this paper are organized as follows. We present, in Section 2,
an overview of the definitions and formnulatioi of the l)roblem. This is followed by Section
3, whereby the solution approach is presented, The method is then demonstrated, as shown



in Section 4, via two examples: a simple exl)losive actuated cylinder (to demonstrate the

solution steps) and a fairly coml)lex dual-wheel excavator. The paper is concluded in Section

5 with the final remarks. Parameters and variables for the formulation and examples are

defined in the nomenclature of Section 8.

2 Formulation

As it was stated in Azarm and Eschenauer (1993), the overall niultiobjective optimization

problem is converted into a minmax form in that the collective ol)jective is to minimize the

maximum loss of all objectives (see also, Osyczka, 1984). Hence, the overall multiobjective

optimization formulation is given as follows:

ninmax f(s)

where the objective and inequality constraint functions, f and 5 components, are smooth

functions of design variables, i. The vector of design variables, •, is partitioned into three

groups: ý', X,, and Y. x represents an N-vector of primary variables, their impact on the

design optimization is assumed to be global (e.g., variables that contribute to many design

parts, disciplines, or nonphysical entities). k, represents an S-vector of secondaryj variables,

their impact on the design is assumed to be local (e.g., variables that contribute to detailed

dimensions or specifications of design parts, disciplines, or nonphysical entities). In general,

as will be observed in the solution steps (Section 3), the primary variables arc included into

the solution process directly, while the secondary variables are considered indirectly (i.e., via

step-size variables). Yý represents a vector of state variables obtainable as a solution of a set

of simultaneous (coupled) equations which can be partitioned, for example, into Yl, Yb, 1•,

such that:

Y.= f. p, fYb, Ye) (2)

Pp, fy.) (3)

hi, 1yb) (4)

The above set of equations represents the SAE. Each equation, also referred to as ('ontribut-

ing Analysis (CA), may represent a particular engineering discipline or a. distinct physical

part (a subsystem) of a system, or both (Sobieski, 1990). Note that the division of SAE

into CAs may: (i) correspond to physical hounidarics present in the problem that suggest

its separation into smaller parts, or (ii) be purely formal as in dividing a set of equuations

into several subsets. These two ways of the SAE partitioning are referred to as physsical and

nonphysical in the paper.
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As it was stated before, presumably the system analysis is performed outside where the
objective and constraint functions (optimization formulation) are evaluated. Furthermore,

it is assumed that in the optimization formulation, the number of variables and constraint

functions (and perhaps the number of objective functions as well) during the solution pro-
cess has to be reduced. The reduction in the number of variables is achieved through the
secondary variables, -' 8. This has recently been developed for a multiobjective case by
Azarm and Eschenauer (199:3). Briefly, it involves partitioning of secondary variables, f(,
into several groups: Xs,, i = 1, ... , I. Each A,, represents a 5i-vector of secondary variables
in an optimization subsystem i (which might be an engineering discipline, a physical part,
or a nonphysical entity). Note that: S = Z =I .5i; the total number of secondary variables

is equal to the sum of the number of secondary variables in each optimization subsystem:

i = 1,. ., I. The vector of secondary variables f',, is replaced by a scalar step-size variable
si as follows:

= ol + sk (5)

where di (as given in Section 3) is a descent direction in the subspace of active constraints
which is obtained from the optimization subsystem post-optimality sensitivity analysis. In
general, the optimization subsystems (or system) can be different from the analysis subsys-
tems (here we use the terms: optimization subsystem and analysis subsystem to distinguish

them from each other).

In order to reduce the number of constraints, the cumulative function (or the KS function)
introduced by Kreisselmeier and Steinhauser (1979), which was also used by Sobieski et al.

(1985), is utilized here. As an example, g9k represents a cumulative function of g9,'",gj:

=k 71i ( exp (Pgi) (6)

where p is a user controlled coefficient. Sobieski et al.(1988) were first to develop a technique,
based on the KS function, to convert a multiobjective optimization problem into a single

objective form. The KS function can also be applied to convert a multiobjective optimization

problem formulated in a minmax form into a single objective form. Figure 1 shows an
example of this whereby fk, and g9k are the KS functions for the objectives and constraints,

respectively. Note that, as shown in the Figure 1, depending on the value of p there
might be a gap in between the minimum of fk, and the mintnax(f1 , f2, f.3), points B and

A, respectively. These two points however will coincide when p --+ cc. Also, note that the
choice of the KS function as a means to reduce the problem to a single objective form implies
that the objective that has the steepest slope after normalization controls the optimization.

Finally, the SAE can be approximated in the optimization formulation in which the
number of variables and constraints are reduced as well, i.e., the optimization problem of (1)
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Figure 1: KS Function for Objectives and Constraints

can be rewritten as follows (I and s are varied while Y fixed):

gks( Sl',SIy) _<0 (7)

where Y E [YI, Y],, Y represents a linear approximation of the . which is computed by
the SAE, Y? and YU represent lower and upper move limits on the current value of Y. The
advantage of (7), when compared with (1), is that the number of constraints is reduced to
one and the number of variables is reduced from (N+S+number of state variables) in (1) to

(N +I) in (7). As an example, in a large-scale structural optimization problem, the reduction
in the number of variables and constraints can (among other reasons) substantially reduce
the computer storage for an otherwise very large jacobian matrix needed by the optimizer.

3 Solution Steps

The solution steps are summarized as follows (see also the flow-chart in Figure 2):

"* Step (0): Identify primary, secondary, step-size and state variables. Initialize with

f" = Xf, , si = 0 and set k=0,

"* Step (1): Solve system analysis equations for Yý, and perfori system sensitivity analysis
((SE as described by Sobieski, 1990) to obtain ,iY/9.i andd ""/).'
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identify and initialize:
primary variables
secondary variables
step-size variables(k--O)ye

I• no

outside loop (k=k+onverged

SYSTEM ANALYSIS vrileupdate secondary

b c ~(CA) b=

(Aco [OPTIMIZER

inside loopSsystem sensitivity reduced-size formulation
snalyste isesitivwith primary and step-size
analysis (GSE) variables

(linearized system analysis)

no reduced-size formulation
with primary variables

1_11 ý Yes (linearized system analysis)

Figure 2: Flow-Chart of the Solution Steps

9 Step (2): if k=O then solve (8) where 1 is varied while Y is fixed:

minmax h(i, Y)

.t. (k, , Y) 5 0 (8)

otherwise (i.e., if k > 1), solve (9) where i? and .5 are varied while Y fixed:

s.t. : gk,(Z, ,.1 .. , S., Y) < 0 (9)

where in (8) and (9), there are move limits on Y, i.e., Y E [YI, -].

* Step (3): As a part of post optimality sensitivity analysis of (8) or (9), compute:

+ 22LLA)(10)ax5 , ax,,



and find:

X new= vold± d,()

e Step (4): Set k=k+l, repeat steps (1)-(3) until convergence is achieved.

In the above-enntioned solution steps, c7 and A are Lagrange multipliers corresponding to

the objective and constraint functions of (8) or (9). Furthermore, Y is obtained as follows:

Y= + { / +Z{(6Y/0Xs,(0X./0.,Zxt1 (12)
i 2

where Y is the current value of Y/. Also:

(0(f or gks)/Ol•) = (6(f or gk,)/09')oca1 + E (1(9 or gks)/g'i)(0Yi/70) (13)
i=a,b~c

(O(f or or gk,)l6Y')}(6X¢/l.s,) (14)
i=a,b,c

The minimax problems of (8) and (9) are solved by the subroutine FSQP (Zhou and Tits,

1991). FSQP (Feasible Sequential Quadratic Programming) is a set of Fortran subroutines

which implements algorithms which are described and analyzed by Panier and Tits (199:3),

Bonnans et al. (1992), and Zhou and Tits (1993a).

4 Examples

Two examples are presented here to demonstrate the method developed in the paper. Both

examples are selected from the literature where they are formulated as a single-objective

problem. They are revised here to form multiobjective examples.

4.1 Example 1: Explosive Actuated Cylinder

This example is constructed from a well-known single-objective optimization problem, a

minimum length design (ft) of an explosive actuated cylinder (Papalambros and Wilde,

1979). The constraints for this example express the specifications for: kinetic energy (gl),

wall stress (92), and geometry constraints (gy-g5). Its formulation is revised here by taking

out one of its constraints (piston force) in the original formulation and including it as an

additional objective (f2) in the problem. As shown below, both objectives have been scaled

so that they are of the same order of magnitude:

,nhzniaa { f ,,f2}

f, = (z, + z2)/L,,Lnx
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f [(l000ir/4)- 4 -5]/F max

.s.t. :(15)

(wVKlni,(l - -Y))/[OOOZ4v7(V,' - v, I < 0

V, = v + (7r/4)zlz-,

V2= vI + (7r/4)z 2z-,

92: ,N/oy - 1 < 0

i° = (a - 0.a12 + a)'I'

Or, = .. (z +2 2 2/( - 2.•

a-2 =--_ Z4

g3: z 3/D,,axl - I < 0

94 (z1 + z 2 )/L,,ta• - I < 0

g5: z5 < z 3

-i > 0 i-- 1,... 5

For convenience, the nomenclature for this example is given in the appendix (see also Pa-

palambros and Wilde, 1979, for further details).

4.1.1 Solution

Following the solution steps in Section 3, we assume: Z- = (zlz,)t, )(, = (z 2,z3,z5 )t. =

(ya,yb) = (vI,v 2)t. We then initialize with ýP = (0.4 ,0.34 )t, Xk° = (1.2,0.82,0.67)', s°=O,

and k=0. Next, as in step (1) of the solution steps, we select and partition the SAE into
two nonphysical analysis subsystems: subsystem a and subsystem b (Figure :3 shows the
interaction between these two subsystems). We then form the global sensitivity equations

= +T/4 z z I yb=v2=v +TI/4z z

subsystem a subsystem b
.... •...o.............o....... o......... ....... .......... ....... ... °.. °.. ..... ..... ..... ........... ...........

Figure 3: Analysis Subsystems for Example 1

(Sobieski, 1990):

( 1 - 4dV 9l O V9VI/ z•k = 9f a/Oz k k = 1,2, 5 (16)

where:

f= v + (ir/4)z-Iz, (17)
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f and ; Test Cases

a b c d e

0.721 0.722 0.72:3 0.724 0.724

h2 0.721 0.722 0.723 0.724 0.724
z_ 0 0 0 0 0
Z2 1.44 1.44 1.44 1.44 1.45
Z3 1 1 0.97 0.99 0.89
Z4 23.4 23.4 23.04 23.04 22.5
z5 0.166 0.166 0.167 0.167 0.169

Key:
a: original double-objective problem
b: original double-objective problem was

reduced to single-objective by KS function
c: original multi-constraint problem was

reduced to single-constraint by KS function
d: no. of variables and constraints are reduced
e: no. of variables and constraints are reduced

with linearization on gm

Table 1: Summary of Results for Example I

fb = v, + (7r/4)z 2z' (18)

As an example, GSE fcr z5 will be as follows:

+1-1 1 ( (v/g ) / ( r/2)z( z

With k=0 at step (2), we formulate (8) with p=150, and solve for updated primary variables:

.i=(0.75,2.3)t. We also obtain (as a by-product of FSQP): (w 1 ,W2)= (0,1) and A=0.2. Next.

we go to step (3), whereby (10) we compute dl, d2, d3 for X', X', X', respectively. We then

express the secondary variables via (11) as a function of the step-size variable -s (new values

for the step-size .s and primary variables i are then obtained via (9) for k > 1). We now

go to step (4) and set k=l and repeat steps (l)-(3). This iterative process continues until

there is no further improvement in the value of objective functions. A summary of results

are given in Table 1. As shown in the table, the results from the solution steps (test case e)

compare well with those obtained when the original problem is solv,-d (test case a), or when

the mmber of objectives are reduced to one (test case b), or when the number of constraints

are reduced to one (test case c), or when the number of variables ( including the step-size

variablc s) are reduced to three and the number of constraints to one (test case d).
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4.2 Example 2: Dual-Wheel Excavator

This example (Figures 4 and 5) is constructed from a single-objective optimization prolhlen

(Wilson. 1992). 'c involves a minininimn weight design of a 120-iich threaded hu}-aiid-s-}i ft

assembly f dual-wheel excavator. There are 9 variables and 25 constraints in this ,example.

The ,unstraints in the example express specifications on: hub stress (qI yl.2), stress on shaft at

.arions critical positions (g:3-g9s). and other practical constraints (gly-y25). Here, the original

single-objective problem (sum of the weights for the hubs and shaft) has been converted into

two objectives: weight of the shaft (f, ), weight of the hub (f2), with both ubjectives scaled
to be of the same order of magnitude:

,,zi,, ,a x { f -, }

f,= (ps'r/4){Zspz:3 + Z-;HZ4 + 2ZH D1 + 2z,3-'
+2Z 7Z 2 + 2Z~z, + 2 19 z}/3300

f = (ps5r/4){[Z7(,Z1 + a)' - Z')] + [(Z7 + 32)l2(Ii2

-(z, + a)2)] + [(13 + B2 )/2(D'0 - DL{)}/5000

.. t. : ((20)

g1(z,, z7) : Oa,,/U + l1,aL/o1 - /If. <_ 0

g2(ZI,Z 7 ) : hI/ a. + amh/aut - ilf 5 < 0

g3(-. 3 , Z7, ZS) : •fb/ILy + a ,.,b/y - 1/1 < 0

9 4(' 3, Z7, ' 8 ) : aob/Ce + O,,b/aut - 1/f < 0

g5(z1 , Z7 ) : ',/o', + ,,l au/ - 1/fs < 0

9 6 (Z,, r): O•au/••e + •,rU/•/ut - 1/f5 •0

g7 (Zl, Z7) : a.,,td/O, + ,,/, - il/f < 0

g8 (Z1, Z7) : Oathd/ae + Omthd/,,o - 11f, < 0

g (zi,) : o,.t,,1/% + O,,ul/o, - I/f < 0

g10(Z1 ) : Oaxth,/ + a'7X,,/Uut I I/f, < 0

91,.((z]. zs5 Z6) : on,/'a + ',,med/o•y - l/f. 5 0

g1'2(Z1 , Z5, Z6) : ,rind/Oe + alnend/at/7i I I/f" < 0

g13 (ZI, ZS) : an O~ei/ay + allieii/Oy - 1IfS 5 0

g~ z.2 :A aare,/Oy + mrep/Ory - 1/.f., < 0

z 2 ) :i i2) i + 11f, < 0

!/17('l, Z.5. Lf) : + 11f :S/j~ 0

Y(Zj. Z. 9Z) : jja + < f



,41r*bucketwheel

hubS~ spacers

earings /

~sprocket

Figure 4: A Dual-Wheel Excavator
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0- 6 (P- 5 Oz 1  OZI ODB 4 ' 4  4) 3

SZsz in *s Threads

Figure 5: Shaft of the Dual-Wheel Excavator

919(Zs) : 0.127Ns - z < 0

g2o(Z2, z3) : 2 - 0.95DB <0

g2 1 (z 2 , z 3 ) : 0.8DB - z2 _5 0

g2'2(z3, z 4 ) : S.ad, + DR/2 - z4/2 < 0

g23(zs,-z6) : z 5 4, 0.0165 - z 6 < 0

g24(z 1, z2) : z + 0.0267 - z 2 • 0

g25(zl, z5 ) : 0.25z, - z.5 < 0

For convenience, the nomenclature for this example is given in the appendix (see also Wilson,

1992, for further details).

4.2.1 Solution

Following the solution steps in Section 3, we assume: •=(z1 , z7 )i, Xs,=(z2 i -3, z 4 , Z8)

Xf, 2=(z 5 , z6 , z9)t. Note that the secondary variables are grouped (optimization subsystems)

according to the physical makeup of the excavator; XG, represents shaft dimensions in be-

tween the two hubs while Xf(2 represents those outside the two hubs (Figures 4 and 5).

State variables Yý, or the SAE (Figure 6), for this example are established so that they only

contribute to the hub stress constraints (g, and g2). The hub is modeled (Wilson, 1992) as a

/ "Qr' Mr. M ro

subsystem b subsystem c
A,B,C,D

S.....................................................................................

Figure 6: Analysis Subsystems for Example 2
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ring plate of linearly varying thickness subject to concentrated transverse load and bending
moment at its outer edge. The SAE is partitioned into three nonphysical analysis subsys-
tems: subsystem a (Y"), subsystem b (f-b), and subsystem c (J,). Note that, the atialysis
subsystems as shown in the Figure 6 are different from the optimization subsystems. Tile

SAE for subsystem a represents:

{, a• = nt = fla(1,,Z7)subsystem a: Y{ = A =f:1(n) (21)

yb2 = A = fa(rl)

where n is the hub's thickness constant, and A is an eigenvalue computed iteratively (as shown

by an arched arrow on subsystem a in Figure 6) by the following characteristic equation.

The characteristic equation is obtained from partial differential equations established for
the hub based on the excavation loading conditions and using small-deflection plate tiheory

(C'onway, 1958; Wilson, 1992):

ý4 - 2ý 3 (71 -ý 2) + \2 [(71 + 2)2 + n(l - v) - 2,,1]

+A(n + 2)[2m 2 - n(1 - V)] + 71t 2 [m2 
- 1 - (3 + Vn)(n + )] = 0(22)

Sis obtained for each m (only 11 terms are considered here, i.e., m=0 to m=10) of the de-
flection (w) equation in subsystem b. As shown below, subsystem b computes the deflection

and loads (shear force, Q, and moments, M,, MO, M~e) on the hub:

yb -=o(ArX + Brý2 + CrX3 + Dr74) cos(mo)
yb = Qr= f(W, zzn)

subsystem b: Y,4 = M - fb (w,z,,z7 , 1) (23)
y4b= MO - fb.(w, zI,z 7 , t)

IY5 -= MAO f4(w, z1,z 7 , n)

where:
Q,= D(r)[8/ar.]((8 2w/8a,.2 ) + (1/7.)(aw/O,.) + (l/,.)(&2w/a02))
M = -D(i.)[(, 2w/1',.) + ,((1/,)(8w/d,) + (1/,.)(O"W/Oo 2)))
Me = -O(,)[(ll,)(dw/d,) + (l/1'.)(0 2w/92 ) + ,(aW/a.)2 )] (24)

M,o = -(I - v)D(,)[(1/,)(O,.O)]

and D(r), the flexural rigidity, is a function of hub radius, r', and 0 is an angular coordinate

on the hub.

Finally, subsystem c represents the boundary conditions which can be used to find
A, B, (7, D coefficients for the above-mentioned deflection (w), Wilson (1992):

Yjc=A; Y.C=B; Yf= C; Y 4,=DS= =fl( (A,B,C,D, =0
subsystem c: aw/8r = fc(A, B, (7, D, A) 0 (25)

•(forces) = f.3(A, B, (7, D, A, ,t M, 9) =0
,(iioients) = I•(A, B, (7, D, M, n, M 0)

Initially, we assumed: 1=(12.1, 8 .9 )t, f(,, = (14.4, 16.6, 19 .1)t', = (9.2, 12, 1.8 )t, ,;=0,

12



f and • Test Cases
a b c d e

f) 0.80 0.79 0.80 0.81 0.81
f2 0.80 0.80 0.80 0.81 0.81
z_ 12.8 12.7 12.7 11.9 12
z2 14.3 14.4 14.3 13.6 13.9

3 15.2 15.2 15.4 15 14.8
Z4, 17.6 17.5 17.8 18.6 18.2
Z5 7.5 6.9 7.7 9 9
46 10 8.9 9. 7 11.8 11.8
_7 5.9 5.9 5.9 6 6

8s 10 10 10 12 11.5
z9 1.3 1.5 1.4 1.2 1.2

Key:
a: original double-objective problem
b: original double-objective problem was

reduced to single-objective by KS function
c: original multi-constraint problem was

reduced to single-constraint by KS function
d: no. of variables and constraints are reduced
e: no. of variables and constraints are reduced

with linearization on gi and g2

Table 2: Summary of Results for Example 2

s 2=0, and k=0. We then followed the solution steps in Section 3 to obtain the results which
are summarized in Table 2 Finally, it should be stated that the minimax solution reported
here (for case a of Table 2, the total hub-and-shaft assembly weight is 10,640 Ib) is different
from that reported by Wilson (1992) in which the problem is formulated in a single objective
form (sum of the weights for the hubs and shaft was 10,211 lb). These two solutions are
essentially two different Pareto solutions for the example as formulated here (Osyczka, 1984).

5 Concluding Remarks

In this paper we have discussed a method for combining a reduction technique with system
analysis equations for multiobjective optimization problems. The main characteristics of thie
method presented are that: (i) the number of variables and constraints can he reduced, (ii)
thw SAE, which might be costly and hierarchically or nonhierarchically decomposed, is per-
formed outside the optimization loop, and (iii) it is applical.e to illulltiobjec'tivewoptimizatiotl

problems.

The method has been demonstrated by two exampJles: (i) a simple explosive actNated

13



cylinder, and (ii) a fairly complex dual-wheel excavator. It has been shown that, for both

examples, when the reduction measures (test cases (b)-(e) for both examples) are applied
they can usually obtain a solution fairly close to that of the original problem (test case

(a)). The small difference in the solution could be eliminated, for example, by increasing the

number of variables, constraints, etc., to resolve a lack of sufficient dcgrccs-of-frc'dom.
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8 Nomenclature

Formulation:
(CA)' = Contributing analysis equations in analysis subsystem a
di -= Descent direction in optimization subsystem i
f = Vector of objective functions'
AS• = Cumulative objective function
4 = Vector of inequality constraint functions

gk, = Cumulative constraint function
I = Number of Optimization subsystems
k = Iteration counter
N = Number of elements in tildex
'Si = Step-size variable in optimization subsystem i
S = Number of elements in f(,
15i = Number of elements in Xf,
i = Vector of primary variables

,f( = Vector of secondary variables
X3, = Vector of secondary variables in optimization subsystem i
" = Vector of state variables

ya = Vector of state variables in analysis subsystem a

YJ Y"' = Lower and tipper move limits on the current value of k
" = Linear approximation to Y

= Vector of overall design variables
A = Lagrange multipliers for constraint functions
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p = User defined coefficient for KS function
w = Lagrange multipliers for objective functions

Example 1:
D,,,r = Maximum allowable cylinder outside diameter, I in
F,,,.a = Maximum piston force, 700 lb
L,,traz = Maximum cylinder total length, 2 in
N = Safety factor, 3
vI, v2  = Initial, final volume of combustion, inl3

v) = Fixed chamber volume, 0.084 in3

W,,,i,, = Minimum kinetic energy, 600 lb-in
= UJnswept cylinder length, in
= Working stroke of piston, in
= Outside diameter of cylinder, in

z4 = Initial pressure of combustion, ksi
zs = Piston diameter, in

= Ratio of specific heats, 1.2
= Equivalent stress, ksi

ery = Yield strength, 125 ksi
Oal, a2 = Principal stress, ksi

Example 2:
a = Diameter constant for the hub, in
B1 , B2  = Hub dimensions, in
Dio = Hub dimension, in
D11  = Hub dimension, in
DR = See Figure 5, in
f. = Safety factor
Ns; = Number of seals
Skhi ,= Radial height of the shoulder at the bearings, in
zi = Shaft dimension (i = 1, 9), see Figure 5, in
ZR = See Figure 5, in
ZI = See Figure 5, in
ZsHt = See Figure 5, in
Zsp = See Figure 5, in
A = Eigenvalue
v = Poisson's ratio
PS = Density, Ibm/in 3

0ab = Alternating stress on shaft at bearings, ksi
aaend = Alternating compressive stress on shaft at end connections, ksi

,aent = Alternating tensile stress on shaft at end connections, ksi
aaes = Alternating shear stress on shaft at end connections, ksi

'a~h = Alternating stress on hub, ksi
a,,e,• = Alternating stress on shaft due to reverse loading, ksi
0 'aghd = Alternating stress on ACME threads, ksi
drau = Alternating stress on shaft at ACME thread undercut, ksi
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6a0 xth = Alternating shear stress on ACME threads, ksi
a, = Endurance limit, ksi
Omb = Mean stress on shaft at bearings, ksi
0rmend = Mean compressive stress on shaft at end connections, ksi
O,,ue,,t = Mean tensile stress on shaft at end connections, ksi
0,,1tes = Mean shear stress on shaft at end connections, ksi
O,,nh = Mean stress on hub, ksi
rmrev = Mean stress on shaft due to reverse loading, ksi

0 ,,LthdO = Mean stress on ACME threads, ksi
o0,,,L, = Mean stress on shaft at ACME thread undercut, ksi
0'nt/& = Mean shear stress on ACME threads, ksi
O',t = Ultimate tensile strength, ksi
ay = Yield strength, ksi
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